Kinetics Review

1. List 5 variables that could be used to monitor reaction rates.

2. The following data was collected for the reaction: $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$.

Determine the instantaneous rate of decomposition of N_2O_5 at t = 30 minutes.

- 3. For the reaction 4 NH₃(g) + 3 $O_2(g) \rightarrow 2 N_2(g) + 6 H_2O(g)$, it was found that at a certain time N₂ was being formed at a rate of 0.27 mol/Ls.
 - a. At what rate was water being formed?
 - b. At what rate was NH₃ being used up?
 - c. At what rate was O₂ being used up?
- 4. Use the collision theory to explain how the rate of chemical reactions is affected by surface area, concentration, and temperature.
- 5. Explain what is meant by activation energy.
- 6. Sketch and label potential energy diagrams for each of the following reactions.
 - a. $A + B \rightarrow C + D \Delta H = 60 \text{ kJ}$
 - b. $E + F \rightarrow G + H \Delta H = -40 \text{ kJ}$
- 7. Explain how a catalyst affects the reaction rate. Use a potential energy diagram in your explanation.

- 8. Explain what is meant by reaction mechanism and rate determining step.
- 9. The reaction between nitrogen monoxide and chlorine has the following mechanism.

Step 1: $NO(g) + Cl_2(g) \rightarrow NOCl_2(g)$ (fast) Step 2: $NO(g) + NOCl_2(g) \rightarrow 2 NOCl(g)$ (slow)

- a. Determine the net reaction.
- b. Indicate any intermediates in the reaction.
- c. Indicate the rate determining step.
- 10. The following initial rates were found for the reaction: $A + B \rightarrow$ products

Trial	[A] (<i>M</i>)	[B] (<i>M</i>)	Rate (<i>M</i> /s)
1	0.20	0.10	0.00340
2	0.20	0.30	0.01020
3	0.40	0.30	0.04080

Give the differential rate equation for the reaction.